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Abstract—The high order theory of plate deformation developed in Ref.[1] and [2] is further examined
herein. Specifically, stress solutions are given and evaluated against exact elasticity solutions under
stringent short wave length load conditions. By the first method the stresses are evaluated directly from the
resulting displacement solutions. In a more refined procedure, the transverse shear stresses and the
transverse normal stress are evaluated by an alternate equilibrium method. The latter procedure is shown to
be more accurate than the former.

INTRODUCTION

It has long been recognized that classical plate theory must be modified to treat certain high
order effects. The first comprehensive generalization of the classical theory was that given by
Reissner[3]. Since Reissner’s work, there have been a great many further generalizations
beyond the classical theory assumptions, with perhaps the highest order theory to date being
that given by Lo, Christensen and Wu[1] and [2]. Preliminary steps were taken in Ref.[1] and
(2] to assess the accuracy of the theory. In this paper this important subject is examined in
greater detail.

The theory developed in Ref.[1] and [2] is based upon an assumed displacement field of the
type

U= u%(x, y)+ 24 (X, y) + 220(x, y) + 2y(x, ¥)
v =0°(x, ¥) + 29, (X, y) + 224, (x, Y) + 229, (%, ¥) §))
w = wo(x, ¥) + 2 (x, y) + 2%0:(x, )

where u and v are the in-plane displacement components, w the out of plane or transverse
component, z the normal coordinate, and the remaining functions in (1) depend upon the
in-plane coordinates x and y. The governing theory, based upon the principle of stationary
potential energy, resulted in eleven second order partial differential equations to determine the
eieven functions in (1). It appears that an approach of this type is the logical way to proceed if
one wishes to determine only the displacements. It is less clear that this approach is the most
expeditious method if one seeks to determine stresses. Now the comparisons with exact
elasticity results given in Ref.[1] and [2] were only for the in-plane stress components, the
transverse shear stresses and the transverse normal stress were not evaluated. Therefore the
more complete stress information to be given here will help to answer the question of the
general accuracy of the theory. Before proceeding with this however, it is useful to consider the
three theoretical approaches to plate and shell development, and some advantages and disad-
vantages of each.

The first and most obvious approach to deriving an approximate plate theory utilizes
assumptions upon the forms of displacements, as in (1). The governing differential equations
could then be derived either by a direct method as in the case of classical plate theory, or by the
use of the principle of stationary potential energy as in Ref.[1]. Equilibrium is violated by this
approach, that is to say, the equilibrium equations are only approximately satisfied through
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weighted averages. The second possible approach is the direct reversal of that just described.
Stress expansions in z are assumed and the governing differential equations are derived either
by a direct approach or by the use of the complementary energy principle. Typical examples
of this approach include the work of Ref.[4]. In this method the equilibrium equations are
satisfied, the stress—strain relations are satisfied, but the compatibility of displacements is violated.
In the third approach, assumptions are made upon both the stress states and the displacement
forms whereby both equilibrium and compatibility conditions are satisfied. However the stress
strain relations are violated. Reissner’s plate theory is the most common form of this type [3].

It is the stress state which usually is the item of interest in most problems. Accordingly it
might seem to be most rational to use either of the latter two stress type theories, but not the
theory which depends exclusively upon displacement assumptions. However, such reasoning
involves one serious problem, namely it would eliminate the extension of the theory to model
laminate behavior. This consequence is because of the fact that in laminates the in-plane stress
components are discontinuous and it becomes an exceedingly complex matter to construct a
high order theory which must inherently account for discontinuous stresses. However, even in
laminates the displacements, of course, are continuous, and since a major impetus in construc-
ting new high order theories is for use with laminates, it is herein considered necessary to
proceed with the displacement theory of Ref.{1]. The displacement theory of Ref.[1] in fact has
been extended to model laminates by Lo, Christensen and Wu[2}.

This status of affairs still leaves us with some uncertainty. Is the displacement type theory
of Ref.[1] and [2] the best means by which to deduce the stress state under conditions where
high order effects are of importance? The doubt arises because the equilibrium conditions are
violated by the theory whereas stresses possess a one to one correspondence to the equilibrium
conditions. However, there is one possible means by which the accuracy of the stresses
obtained by this displacement type theory can be improved. The possible procedure is as
follows. Use the high order theory based upon (1) to deduce the in-plane siress components. o,
oy, and 7,,. Then insert these stress solutions into the equilibrium equations and solve for the
out of plane/transverse stress components 7,,, 7 and o, by integration. This procedure clearly
results in a stress solution which satisfies equilibrium exactly. The procedure is suggested by
the classical theory approach, which does not directly provide a solution for the transverse
stress components, and they have to be found by the method described above,

Thus, the stresses implicit in the high order displacement type theory of Ref.[1] and [2] will
be determined by two separate means. First the in-plane and transverse stresses will be found
directly from the displacement solution through the use of the strain-displacement and stress
strain relations. By the second method the in-plane stresses will be found by the method just
described and they will then be used to determine the transverse stresses by integrating the
equations of equilibrium. These two alternate methods of deducing stress will be compared and
tested against exact elasticity solutions in the case of homogeneous plates. Then the second, more
refined, procedure will be applied to laminates.

THEORETICAL CONSIDERATIONS
The assumed displacement fields are given by relations (1). The polynomial expansion for w
is truncated at one order lower than the expansion for u and v such that the contributions to
the transverse shear strains from u and v are of the same order in z as that from the terms in w.
The strain-displacement relations of the linear theory of elasticity are

€= Ui+ T + 2l + s

€ = 0% + 2y, + 270, + z"’n )
€ =, +21¢,
and
Yoo = Yoy + 20ey + 2By + ZJny
Ys: = Yiy + erz + Zzﬁxz 3

— 2
Vye = Y5+ 20y + 2°Bye
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with
Y§y=“?y+ Urs  Yr =Pt W Y5 = ¢y + W,

rxy = wx.y + "‘y.x; l.sz = 2{: + 'llz.x; l“yz = 2{! + wz.y

4
BX)’ = Zx.y + gy.x; ﬂxz = 3¢x + {z.x; Byz = 3¢y + {z,y ( )
ny = ¢x.y + ¢y.z-
The stress-strain relations appropriate to an anisotropic material are given by
oy Ci Cu Cis Cu  Cis Ci) [, |
ay Cn Cun Cu Ci Cx €
ol _ Cis Cu G Cx € )
Tyz Cu Cos Cu ¥y
Txy Sym CSS c56 Vxz
el L C“_ | Yy

where C;, i,j=1,2,...6 are the stiffness coefficients. The derivation of the governing equa-
tions for this higher order plate theory is given in Ref.[1] for homogeneous isotropic plates, and
its extension to laminated plate conditions is given in Ref.[2]. The evaluation of the stresses will
now be given by the two methods mentioned in the introduction.

STRESS EVALUATION, HOMOGENEOUS PLATE

An infinite homogeneous isotropic plate is subjected to sinusoidal loadings as in Ref.[1]. The
prescribed surface tractions are

a.(h12) = gosin (1’5) o~ hi2)=0 ®)
and
T2 h2) = 1,5(= h12) =0 %

where # is the plate thickness.
The selutions to the plate problems are [1).

u=[Ao+ 2A,+ 2*A;+ 2’ As) cos (-’%)

v=0 ®

w = [Cy+ 2C, + 2°C) sin (—1%)

where the constants Ay, A;, A, A; and C,, C, and C; are obtained by satisfaction of the
governing differential equations and boundary conditions. From (3)~(5) the transverse stress
components appropriate to a homogeneous isotropic plate are
o= AU+ 0%+ (A +2u);
+ z[A(Yex + ("‘y.y) +2(A + 2“){:]
+ Z2A(lex + {yy) + A (G + By,y)

and
T = p(P: + W)+ le/(zlx + ;) + 22F(3¢x +{)
Ty: = P‘(wy + w?y) + ZI‘-(Z{y + i)+ Zzﬂ(3¢y + {zy)- (10)
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Substituting (8) into (9) and (10) gives the transverse stress components for the infinite plate

={—AAO%+(A +2“)C2+Z[-AA|%+2(/\ +2M)C3] ZAAZZ- < AA; L} sin ( LX)

(1
and

- {“[Al +C, -’E] + zu[zAz+ c,%] + zzu[3A3 + C;%]}cos ('—Z—‘) (12)

Ty =
These stresses are of course those deduced directly from the theory, and they will be displayed
graphically for particular values of h/L, i.e. the ratio of the thickness of the plate to the
characteristic length of the loading pattern. First of all, however, these same stress components
will be evaluated by the alternate method mentioned in the introduction.
The in-plane stress components for the problem under consideration are given in Ref.{1).
These in-plane stresses are substituted into the equilibrium equations

Gijj = 0 (13)
to yield, after integration, the out of plane/transverse stress components:
- n e
o, {2+2 z 3 (A+2p)A0P )‘-CZP

1
12 [Z “—](A + ZM)AZ

2 h 2
+§{% T][(qum. -2 C,%;]
z[z* !
i[5 BBl ()

and

,

ne={e{a+mz -G
1

h
+3 [z ———] [(,\ +2y.)A1 2AC;L]
3 w1 2
+ % (N +20)A; {1+ 3 [z‘-— Té]"‘ +21)As %,} cos (——’f) (15)

where the top and bottom surface traction conditions (6) and (7) have been used to evaluate the
constants of integration.

The corresponding exact elasticity solution for this problem is given in Ref.{5], among many
other sources. Before comparing the two alternate means of deriving the stresses, first the
corresponding results for a particular liminated plate will be stated.

LAMINATED PLATE

The laminate to be considered is that of symmetric cross-ply geometry with each lamina
being orthotropic. Using relations (5), (8) and (13), the transverse stress components are found
to be

w={-e[- ‘*’A.—,+cs*’ch]—7[ c..A.L+2cuc3L]

3

53- [C“"Az -1] +5 [C“" %;]} cos ( ) + f9x) (16)
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and
?

oP= {;z[c Ao—! CuCz—!]"' [Cﬁn’A:-z

73

-2c¢ ’c,z,]+—c 5
) k), (k).
+Z Cnf\s‘zs}sm( %) - w0, + £¥x) a7

where the index k refers to the kth layer and where f* and g"*'(x) are determined from the
boundary and continuity conditions. These transverse stresses are those found by the method
involved in using the in-plane stresses in the equations of equilibrium which are then integrated
to find the three remaining transverse stress components.

Further consideration will be limited to the case of a three layer laminate arranged with the
fiber directions designated by [0°/90°/0°] and with the laminae having equal thickness of A/3. The
following expressions are obtained for f*'(x) and g*(x).

1) = {4 - cva o+ c8C. ]+ £{ - ctoa v 2cic 2]
gL gen ()
2 .
f"’(x)=f‘"(x)+{-:-[-—[C‘.’.’—C"l‘n’]AozzHC‘.’;’—C‘.‘s’lCz%]
L[ -1c8- cta e 20R-CMIC, 2]

- k(R - Cta T (0B - CAs o) cos () 19)

2

0= {2 [~ chacTrs cve ]+ 4 [ - ca

3 2 4
+2086, ]+ & i -

CthAs T} cos () (20)
00 = ot () + £ 190 - (& [ T - ce. B+ [cva B -2080, 5]
192C“)“""+ C‘“‘"’} (T) @
£ =2 [1200- 120+ 870+ {E [ - cAB-(CB- B ]
+ i [ct- A B-2c8- cwc T

h‘ |)_ f’ h’ (])_ fz} . .f_x
+ 15553 (€11 — CA: T3+ 135535 (€1 = CAs 3 sin ( L )
and

"’(x)=--f"’(x) { [c ATy~ C(u’Cz—z]

N 3
~altap 2w B+ i cva s
i’ N ..
o Cs o} sin () ®
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where the subscripts 1, 2 and 3 refer to the 0°, 90° and 0° layers, respectively.
The stress distributions will be displayed for lamina of the following properties which are
typical of high modulus graphite/epoxy composites

E =25x10%psi; Er=10°psi
Gir=05x10°psi; Grr =0.2x 10®psi (24
vttr=wWT = 0.25.

where L and T refer to the properties along and transverse to the fiber directions, respectively,
and » 7 is the Poisson’s ratio measuring transverse striin under normal ‘stress paraliel to the
fibers.

DISCUSSION

The transverse normal stress and transverse shear stress for the homogeneous isetropic
plate case are given in Figs. 1-3. The difference in these figures is due to the variation in the
ratio of A/L, i.e. the ratio of thickness to half wave length of the sinusoidal load. In Fig. 1, for
hiL = 1/4, the normal stresses calculated by the two different means are compared with the
exact solutions. For this small value of A/L, the transverse shear stresses caiculated by the two
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Fi-. 1. Transverse normal stress distributions for a homogeaeous isotropic plate at ML =0.29.
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Fig. 2. Transverse normal stress distributions for a homogeneous isotropic plate at A/L = 1.0.
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z/h

Fig. 3. Transverse shear stress distributions for a homogeneous isotropic plate at h/L = 1.0.

methods are so close to the exact solutions as to make them look identically equal graphically.
Clearly the transverse normal stresses found by the integration of the equations of equilibrium
are far more accurate than those obtained directly from the displacement solution through the
strain displacement and the stress—strain relations. The results shawn in these figures reveal
that the transverse stresses found by equilibrium equation integration to be more accurate than
those found directly from the displacement solution, with these results being under stringent
short wave length load conditions. As discussed in Ref.[1] the maximum ratio of A/L for which
the theory has reasonable validity is about A/L = 1 and the results shown here corroborate this
conclusion.

It is of interest to note from Figs. 1-3 that the transverse stresses obtained directly from the
displacement solution violate the top and bottom traction conditions. An examination of the
derivation in Ref.[1] reveals this to be a consistent aspect of the method. Thus even though the
tractions enter the theory as boundary conditions, this process actually occurs through an
equilibrium weighting method, thus the theory does not provide exact satisfaction of these
boundary conditions. Consider however, the alternate method of obtaining the tramsverse
stresses from integrating the equilibrium equations utilizing the in-plane stresses found directly
from the displacement solution. In this case the boundary tractions are automatically satisfied
through the evaluation of the constants of integration. A similar situation exists in the case of

2/h

Fig. 4. Transverse normal stress distributions for a {0°, 90°, 0°] laminate at WL = 0.25
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2/h

%’

for.90°,07, nrs0.25
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~————— EQUILIBAUM EQUATION METHOD
—— - —— CLASSICAL PLATE THEORY

Fig. 5. Transverse shear stress distributions for a [0°, 90°, 0°} laminate at A/ L =0.25.

laminated piastes. Transverse stresses evaluated directly from the displacement solution would
in general not be continuous across the interfaces between lamina, however the transverse
stresses found by the equilibrium method proposed herein provide continuous stress with exact
satisfaction of top and bottom swrface conditions.

The results for a three layer laminate are shown in Figs. 4 and 5, for the value of A/L = 1/4.
The exact elasticity solution is takea from Pagano[6]. It is apperent that the case of the
laminate provides much more strentious conditions against which to test a plate theory than
does homogeneous conditions. Nevertheless, as seen in these fignres the equilibrium equation
method of generating transverse stresses provides a reasonable approximation to the exact
solution.

CONCLUSIONS

The present high order theory of plate deformation appears to.provide reasonably accurase
predictions of behevior under short wave length conditions. This conclusion is valid for both
homegeaaous plates and for laminates; also as shown by the resuits, laminates are much more
demanding of high order effect representation then are bomogeneous plates. In problems where
dispiacements are the quantity of prime interest the present displacement type theory appears
to provide a reasonable and high order effect solution. In problems where the stresses are the
quantity sought it has been shown that the present theory still provides highly accurate stress
information. It has been demonstrated that the best method for determining the stresses
involves determining the in-plane stresses directly from the displacement solution and thence
determining the transverse stresses through the integration of the equations of equilibrium,
utilizing the in-plane solution therein. This method is of course applicable to a theory of any
order not just the present high order theory. The success of the method was virtually assured
by the fact that it is the only possible procedure for use at the level of the classical theory
assumptions.
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